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Chapter 1

Specification

1.1 Parameters

AScoN is a family of authenticated encryption designs ASCON, ,-k. The family members
are parametrized by the key length & < 128 bits and internal round numbers a,b. Each
design specifies an authenticated encryption algorithm &, and a decryption algorithm
Dab k-

The inputs for the authenticated encryption procedure &, ;, are the plaintext P, asso-
ciated data A, a secret key K with k bits and a public message number (nonce) N with
k bits. No secret message number is used, i.e., its length is 0 bits. The output of the
authenticated encryption procedure is an authenticated ciphertext C of exactly the same
length as the plaintext P, and an authentication tag T of size k bits which authenticates
both A and P:

ga,b,k(Ka N, Aa P) = (07 T)

The decryption and verification procedure D, p ;. takes as input the key K, nonce IV,
associated data A, ciphertext C' and tag T, and outputs the plaintext P if the verification
of the tag is correct or L if the verification of the tag fails:

Da,b,k(Ka N,A,C, T) € {PﬂJ—}

1.2 Recommended parameter sets

Tunable parameters include the key size k, as well as the number of rounds a for the
initialization and finalization permutation p®, and the number of rounds b for the interme-
diate permutation p® processing the associated data and plaintext. Table [1] contains our
recommended parameter configurations. The list is sorted by priority, i.e., the primary
recommendation is ASCON-128 and the secondary recommendation is ASCON-96.

Table 1: Recommended parameter configurations for ASCON

. bit size of rounds

name algorithm
key mnonce tag data block p® pb
ASCcoN-128  AscoNjp6-128 128 128 128 64 12 6
ASCON-96 ASCON;2 3-96 96 96 96 128 12 8




1.3 Notation

The following table specifies the notation and symbols used in this document.

x € {0,1}*
0%, 0*
||

|z] k
[2]"

bitstring x of length k (variable if k = x)

bitstring of k£ bits or variable length, all 0

the length of the bitstring z in bits

bitstring = truncated to the first (most significant) k bits
bitstring « truncated to the last (least significant) k bits

Dy xor of bitstrings x and y

x|y concatenation of bitstrings = and y

S the 320-bit state S of the sponge construction

Sy Se the r-bit rate and c-bit capacity part of the state .S

ZTo,...,T4  the five 64-bit words of the state S

K, N, T secret key K, nonce N, tag T, all of k < 128 bits

P,C A plaintext P, ciphertext C, associated data A (in blocks P;, C;, 4;)
L error, verification of authenticated ciphertext failed

p, p%, p° permutations p®, p® consisting of a, b update rounds p, respectively

1.4 Mode of operation

The mode of operation of ASCON is based on duplex sponge modes like MonkeyDuplex 8],
but uses a stronger keyed initialization and keyed finalization function. The core permu-
tations p® and p® operate on a sponge state S of size 320 bits, with a capacity of ¢ = 2k
bits and a rate of r = 320 — ¢ bits. For a more convenient notation, the rate and capacity
parts of the state S are denoted by S, and S,, respectively. The encryption and decryption
operations are illustrated in Figure [[] and Figure [2] and specified in Algorithm
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Figure 1: The encryption of ASCON.
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Figure 2: The decryption of ASCON.



Algorithm 1: Authenticated encryption and decryption procedures

Authenticated Encryption &, (K, N, A, P) Verified Decryption Dg (K, N, A, C,T)

Input: key K € {0,1}*, k < 128,

nonce N € {0, 1}*,

plaintext P € {0,1}",

associated data A € {0,1}"
Output: ciphertext C € {0,1}*,

tag T € {0,1}*

Input: key K € {0,1}", k < 128,
nonce N € {0,1}",
ciphertext C € {0,1}%,
associated data A € {0, 1},
tag T € {0,1}*
Output: plaintext P € {0,1}" or L

Initialization
c+—2-k
r< 320 —c
Py ...P + pad,.(P)
¢=|P| mod r
Ai... As «— pad(A)
S klallbo=**| K[| N
S« p*(8) @ (07" | K)
Processing Associated Data
fori=1,...,sdo
S« p"((S- & Ai) || Sc)
S+ S@(0°1)
Processing Plaintext
fori=1,...,t—1do
Sy« S, ® P,
Ci <— Sr
S« p°(9)
Sr < Sr D P
Ct < LSTJZ
Finalization
S (S @ (07]| K[ 0%))
T+ [ST"e K
return Ci||...||C:, T

1.4.1 Padding

Initialization
c+—2-k
r<+ 320 —c

£=|C| mod r
Ai... A+ padi(A)
S klalbl0™* || K| N
S p*(S)® (07" | K)
Processing Associated Data
fori=1,...,sdo
S p"((S- @ Ai) || Sc)
S+ S@(0°?1)
Processing Ciphertext
fori=1,...,t—1do
P+ S-®C;
S+ Ci | Se
S« p°(9)
P; +— \_S"'JZ (&) Ct
Sp 4= Ce[[([S: 1" @ (1] 07717))
Finalization
S p*(S@ (07| K ||0%))
T« [S]"® K
if T=T" return P ||...|| P
else return L

AscoN has a message block size of r bits. The padding process appends a single 1 and the
smallest number of Os to the plaintext P such that the length of the padded plaintext is a
multiple of r bits. The resulting padded plaintext is split into ¢ blocks of r bits: Py||...|| ;.
The same padding process is applied to split the associated data A into s blocks of r bits:
Aq]...||As, except if the length of the associated data A is zero. In this case, no padding is
applied and no associated data is processed:

Pi,..., P, « pad, (P) = r-bit blocks of P || 1 0r—!~(1Plmodr)

1-bit blocks of A || 1] 07~1=(Almedr) if | 4] > 0

Ar, .o A dr(A) =
1 i <;pa‘ T( ) {@ if|A‘:0

1.4.2 Initialization

The 320-bit initial value (IV') of ASCON is formed by the secret key K and nonce N (both
k bits), as well as the key size k, the initialization and finalization round number a, and
the intermediate round number b, each written as an 8-bit integer:

IV < kla| b 0" | K || N



In the initialization, a rounds of the round transformation p are applied to the initial value,
followed by an xor of the secret key K:

S p"(IV) @ (074 || K)

1.4.3 Processing Associated Data

Each (padded) associated data block A; with ¢ = 1,...,s is processed as follows. The
block A; is xored to the first r bits S, of the internal state S. Then, the whole state S is
transformed by the permutation p® using b rounds:

S« p°((S, ® Ai) || Se), 1<i<s

After the last associated data block has been processed (also if A = &), a single-bit domain
separation constant is xored to the internal state S:

S S@ (039 1)

1.4.4 Processing Plaintext/Ciphertext

Encryption. In each iteration, one (padded) plaintext block P; with ¢ = 1,...,¢ is xored
to the first r bits S, of the internal state S, followed by the extraction of one ciphertext
block C;. For each block except the last one, the whole internal state S is transformed by
the permutation p® using b rounds:
C; < S, 9 P,
5 °(Ci || Se) %f1g§<u
Ci |l Se ifl1<i=t

The last ciphertext block is truncated to the unpadded length of the last plaintext block-
fragment, ¢ = |P| mod 7:

Cy + |Ct], -
Thus, the length of the last ciphertext block C; is between 0 and r — 1 bits, and the total
length of the ciphertext C is exactly the same as for the original plaintext P.

Decryption. In each iteration except the last one, the plaintext block P; is computed by
xoring the ciphertext block C; with the first r bits S, of the internal state. Then, the first
r bits of the internal state, S, are replaced by C;. Finally, for each ciphertext block except
the last one, the internal state is transformed by b rounds of the core permutation p®:

P+ S, @C
S «— p’(Ci | S.), 1<i<t

For the last, truncated ciphertext block with 0 < ¢ < r bits, the procedure differs slightly:

P, LSTJK o C
S+ CI([S: 1 @ ()07 9) || S.

The plaintext is returned only if the tag 7" has been successfully verified in the finalization.



1.4.5 Finalization

In the finalization, the secret key K is xored to the internal state and the state is transformed
by the permutation p® using a rounds. The tag T consists of the last k bits of the state
xored with the key K:

S« p*(S @ (0 || K [|0%))
T+ [S]"a K

The encryption algorithm returns the tag 7" together with the ciphertext C1, ..., C;. The de-
cryption algorithm returns the ciphertext P, ..., P; only if the calculated tag value matches
the received tag value.

1.5 The Permutations

The main components of ASCON are two 320-bit permutations p® (used in the initialization
and finalization) and p® (used during data processing). The permutations iteratively apply
an SPN-based round transformation p that in turn consists of three subtransformations
pc,ps and pr:

P=DpPLOpPsoPpcC-

p® and p® differ only in the number of rounds. The number of rounds a for initialization
and finalization, and the number of rounds b for intermediate rounds are tunable security
parameters.

For the description and application of the round transformations, the 320-bit state .S is
split into five 64-bit registers words z;,

S=8||Se =0 |1 [l w2 || 23 || 24,

as illustrated in Figure

Zo
Z1
T2
x3
Ty

Figure 3: The register word representation of the 320-bit state S.

1.5.1 Addition of Constants

Each round p starts with the constant-addition operation pc which adds a round constant
¢ to the register word zo of the state S:

To < T2 D Cp

The round constant is different for each round; the values for the first round constants as
required for the recommended number of rounds are given in Table



Table 2: The round constants used in each round of p® and p®.

round constant round constant

0 0x000000000000000000£0 6 0x00000000000000000096
1 0x000000000000000000e1 7 0x00000000000000000087
2 0x000000000000000000d2 8 0x00000000000000000078
3 0x000000000000000000c3 9 0x00000000000000000069
4 0x000000000000000000b4 10 0x0000000000000000005a
5 0x000000000000000000a5 11 0x0000000000000000004b

Zo

Ty

SDDDDDDD T2

xs3

T4

Figure 4: The constants are added to word z2 of the state.

1.5.2 Substitution Layer

In the substitution layer pg, 64 parallel applications of the 5-bit S-box S(z) defined in
Table [3| are performed on the 320-bit state. As illustrated in Figure[5| the S-box is applied
to each bit-slice of the five registers xg, ..., x4, where x( acts as the MSB and x4 as the LSB
of the S-box.

Zo
T
T2
3
T4

Figure 5: The substitution layer of ASCON applies an 5-bit S-box S(x) to the state.

Table 3: The 5-bit S-box S(z) of ASCON.

T o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
Sy 4 11 31 20 26 21 9 2 27 5 8 18 29 3 6 28

z 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Sz) 30 19 7 14 0 13 17 24 16 12 1 25 22 10 15 23

The S-box will typically be implemented in its bitsliced form, with operations performed
on the entire 64-bit words. Figure [6] illustrates a bitsliced computation of the S-box values.
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Figure 6: Bitsliced implementation of the 5-bit S-box S(z)

This sequence of bitsliced instructions is well-suited for

implementation with five temporary registers t, . ..

x0 =

x4;

= x0;
~ t0;
= x1;

t1;
x0;

,t4 shows:
x4 ~= x3; x2 "= x1;
tl1 = x1; t2 = x2; t3 =
tl =" ti; t2 =7 t2; t3 ="
tl &= x2; t2 &= x3; t3 &=
x1 "= t2; X2 "= t3; x3 "=
x0 "= x4; x3 "= x2; x2 ="

pipelining, as the following

x3; t4d = x4;
t3; t4d =" t4;
x4; t4 &= x0;
t4; x4 "= t0;
X2;

Figure 7: Pipelinable instructions for the 5-bit S-box S(z)

1.5.3 Linear Diffusion Layer

The linear diffusion layer py, of ASCON is used to provide diffusion within each of the five
64-bit register words x; of the 320-bit state S, as illustrated in Figure [§| We apply a linear

function ¥¢(zo), .. .,

Y4(z4) to each word x; separately,

where the functions ¥; are defined as follows:

Yo(z0) = xo ® (o >>19) ® (x9 > 28)

Ti(z1) =21 @ (1 > 61) & (21 > 39)

So(we) =22 ® (22> 1)@ (2> 6)

Y3(x3) = 23 @ (w3 3> 10) @ (23 >> 17)

Ya(za) =24 @ (24> T) D (34 >> 41)
Zo
Z1
T2
€3
T4

Figure 8: The linear diffusion layer of ASCON mixes bits within words using ¥;(z;).



Chapter 2

Security Claims

Table 4: Security claims for recommended parameter configurations of ASCON.

Security in bits

Requirement

ASCON-128  ASCON-96
Confidentiality of plaintext 128 96
Integrity of plaintext 128 96
Integrity of associated data 128 96
Integrity of public message number 128 96

There is no secret message number. The public message number is a nonce, i.e., the
security claims are void if two plaintexts are encrypted under the same key and the same
public message number. In particular, reusing the nonce for two messages allows to detect
plaintexts with common prefixes and to deduce the xor difference of the first block pair
that differs between the two messages. Except for the single-use requirement, there are no
constraints on the choice of message numbers.

The decryption algorithm may only release the decrypted plaintext after verification of
the final tag. Similar to GCM, a system or protocol implementing the algorithm should
monitor and, if necessary, limit the number of tag verification failures per key. After reaching
this limit, the decryption algorithm rejects all tags. Such a limit is not required for the
security claims above, but may be reasonable in practice.

The number of processed plaintext and associated data blocks protected by the encryp-
tion algorithm is limited to 254 blocks per key. This requirement also imposes a message
length limit of 264 blocks, which corresponds to 272 (ASCON-128) or 280 (ASCON-96) bytes
(for plaintext and associated data).

As for most encryption algorithms, the ciphertext length leaks the plaintext length since
the two lengths are equal (excluding the tag length). If the plaintext length is confidential,
users must compensate this by padding their plaintexts.

We emphasize that we do not require ideal properties for the permutations p®, p*. Non-
random properties of the permutations p?, p® are known and do not automatically afflict
the claimed security properties of the entire encryption algorithm.



Chapter 3

Security Analysis

3.1 Basic Properties

In this section, we give some known properties of the S-box used in AscoN. Table[I0]shows
the differential probabilities corresponding to input and output differences. As can be seen
in the table, the maximum differential probability of the S-box is 272 and its differential
branch number is 3. Table shows the biases of the linear approximation defined by
corresponding input and output masks. The maximum linear probability of the S-box is
272 and its linear branch number is 3.

Let xg,x1, 22, 23,24 and yo,y1,Y2,ys,ys be the 5-bit input and output of the S-box,
where xq refers to the most significant bit or the first register word of the S-box. Then the
algebraic normal form (ANF) of the S-box is given by:

Yo = 421 + T3 + T2T1 + T2 + 1% + T1 + 2o,

Y1 = T4 + 322 + T321 + T3 + T2x1 + T2 + 1 + To,
Y2 = a3 + x4+ 22 + 21 + 1,

Y3 = TaZo + T4 + T3To + T3 + T2 + T1 + To,

Yq = T4Tq —+ x4 + I3 + T1Xo —+ 1.

Note that the number of monomials which appears in the polynomial representation is
smaller than that of a randomly generated S-box and the algebraic degree is 2. Though
one might claim that this S-box is weak in terms of algebraic attacks, we have not found
any practical attack on ASCON using these properties.

However, it should be remarked that the low algebraic degree of the S-box and the small
number of rounds of p® and p® results in rather efficient zero-sum distinguishers [6] for the
two permutations. Hence, the two permutations can not be considered as perfect random
permutations.

3.2 Differential Propagation

In this section, we will discuss the security of ASCON against differential cryptanalysis. It is
easy to see that the branch number of ¥; is only 4 and that this alone might not be enough
to get good bounds against differential attacks in ASCON. However, in combination with
the S-box, which has branch number 3, and the fact that different rotation values are used
in all the ¥;, the number of active S-boxes is increased significantly. We have confirmed
that the minimum number of active S-boxes of 3 rounds is 15. However, the search for more
than 3 rounds is computationally infeasible. Therefore, we used a heuristic search tool to
find good differential trails for more rounds to get close to the real bound. The results are



listed in Table [5] and the best truncated differential trail for 4 rounds is given in Table [f]
We want to note that we could not find any differential trails for more than 4 rounds with
less than 64 active S-boxes. The best differential trail we could find for 5 rounds has already
87 active S-boxes.

Table 5: Number of active S-boxes in ASCON for up to 4 rounds (* from heuristic search).

rounds ﬁ_ggggs probability
1 1 272
2 4 28
3 15 230
4 *47 294

Table 6: The best known differential trail for 4 rounds of p (in truncated notation).

round truncated # active
differential S-boxes
0 8000000000000000 1
1 8020400000000000 3
2 8120508c0a441020 14
3 b1567ccd18669181 29
total 47

3.3 Collision-Producing Differential

Besides the differential propagation in ASCON, an attacker is in particular interested in
collision-producing differentials, i.e., differentials with only differences in the rate part S,
of the state at the input and output of p?, since such differentials might be used for an
forgery attack on the authenticated encryption scheme. However, considering the good
differential properties of p® and the results of the previous chapters, it is very unlikely that
such differentials with a good probability exist. The best truncated collision-producing
differential trails we could find for p® in ASCON-96 and ASCON-128 using a heuristic search
algorithm have 117 and 192 active S-boxes, respectively. The truncated differential trails
are given in Table [7] and Table

3.4 Impossible Differentials

In this section, we will discuss the application of impossible differential cryptanalysis to
Ascon. Using an automated search tool, we were able to find impossible differentials
for up to five rounds of the permutation and it is likely that impossible differentials for
more rounds exist. However, we have not found any practical attack on ASCON using this
property of the permutation. An impossible differential for 5 rounds of the permutation is
given in Table [9]
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Table 7: The best known collision-producing differential trail for intermediate rounds of
AsScoN-128 with 117 active S-boxes (in truncated notation).

round truncated # active
differential S-boxes

0 8000000000000000 1

1 8100000001400004 5

2 9902a00003c64086 17

3 fcf7eeeldfeefdf7 48

4 dba6fe7bdfef8cef 45

5 0000400000000000 1

total 117

Table 8: The best known collision-producing differential trail for intermediate rounds of
ASCoN-96 with 192 active S-boxes (in truncated notation).

round truncated # active

differential S-boxes
0 8000000000000000 1
1 c200000000000000 3
2 €238e10000000000 11
3 73b7fbf67£6£19f0 44
4 bb4ffe8fdbdddf7f 48
5 fffffdffffffffff 63
6 2d0486c240902436 20
7 2080000000000000 2
total 192

Table 9: The best known impossible differential, covering 5 rounds of p

input differential

output differential
after 5 rounds

Zo
il
T2
r3
Ty

0000000000000000
0000000000000000
0000000000000000
0000000000000000
8000000000000000

0000000000100000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

11



Chapter 4

Features

The main feature of ASCON is its lightweight implementation characteristics in both hard-
ware and software while still being reasonably fast. In particular, ASCON was designed to
allow efficient implementation of side-channel resistance features. ASCON is not intended to
compete with very fast parallel authenticated encryption schemes on unconstrained devices.
However, ASCON has been designed to use a minimum number of instructions while still
maximizing the parallelism of these instructions. Therefore, ASCON is best used where size
and implementation security matters but reasonable performance is also required.

The ASCON cipher is online and can encrypt plaintext blocks before subsequent plain-
texts or the plaintext length is known. The same holds for the decryption, which decrypts
the ciphertext blocks online in the order they were computed during encryption. However,
during decryption, the plaintexts must not be used until the tag has been verified. The
cipher does not need to implement any inverse operations and decryption is equally fast as
encryption.

Since ASCON uses many well-studied components such as the sponge construction and
an SPN-based permutation, it is easy to analyze. Furthermore, it provides strong security
arguments and bounds for the linear and differential probability to exclude certain classes
of attacks.

Additionally, ASCON can be implemented efficiently on platforms and applications where
side-channel resistance is important. The very efficient bitsliced implementation of the S-
boxes prevents cache-timing attacks, since no look-up tables are required. The low algebraic
degree of the S-box facilitates first-order masking or sharing-based side-channel countermea-
sures such as threshold implementation [11], which has already been applied to the S-box
of Keccak in [1].

The internal permutation is based on very simple operations that are easy and efficient
to implement both in hardware and in software, in particular on processors using the mod-
ern standard word size of 64 bits. All required steps are intuitively defined in terms of
simple word-wise (64-bit) standard operations, which significantly reduces the effort of im-
plementing the algorithms on new target platforms. The operations are also well-suited for
processors with smaller word sizes, and can take advantage of pipelining and parallelization
features of high-end processors. In particular, the substitution and linear layer has been
specifically designed to support high instruction parallelism in bitsliced implementations.

The ciphertext size for ASCON in bits is exactly the same as for the (unpadded) plaintext
size, thus allowing the encryption of short messages with very little transmission overhead.
On the other hand, like many sponge constructions, such as the MonkeyDuplex construc-
tion, ASCON uses only a relatively weak intermediate permutation for each additional plain-
text block, which is beneficial for the performance for long multi-block plaintexts.

The default recommended key, nonce and tag size is 128 bits. It provides more than
adequate security for most applications and reasonable performance characteristics. For

12



increased performance, the smaller key size of 96 bits can be used, which allows to process
blocks of twice the size with only a slightly higher number of rounds in the intermediate
permutations.

Compared to AES-GCM, the advantages of ASCON are its relatively small state size
of 320 bits, its low area in hardware and less overhead to provide side-channel resistant
implementations. In general, ASCON is significantly easier to implement from scratch than
AES-GCM in both hardware and software. ASCON also features smaller block or key sizes,
which is useful in very constrained environments. The disadvantages of ASCON compared
to AES-GCM are that ASCON is not parallelizable (on a message block level) and, since
it is a dedicated design, cannot profit from existing high-performance implementations of
AES such as Intel’s AES-NI instruction set.

13



Chapter 5

Design Rationale

The main goal of ASCON is a very low memory footprint in hardware and software, while
still being fast and providing a simple analysis and good bounds for the security. The design
rationale behind ASCON is to provide the best trade-off between security, size and speed in
both software and hardware, with a focus on size.

ASCoON is based on the sponge design methodology [2]. The permutation of ASCON uses
an iterated substitution-permutation-network (SPN) which provides good cryptographic
properties and fast diffusion at a low cost. To provide these properties, the main components
of ASCON are inspired from standardized and well analyzed primitives. The substitution
layer uses an improved version of the S-box used in the x mapping of Keccak [4]. The
permutation layer uses a linear functions similar to the X functions used in SHA-2. Details
on the design principles for each component are given in the following sections.

5.1 Choice of the Mode

The design principles of AscoN follow the sponge construction [2], to be more precise,
they are very similar to SpongeWrap [3] and MonkeyDuplex [8]. The sponge-based design
has several advantages compared to other available construction methods like some block
cipher- or hash function-based modes, and other dedicated designs:

e The sponge construction is well-studied and has been analyzed and proven secure
for different applications in a large amount of publications. Moreover, the sponge
construction is used in the SHA-3 winner Keccak.

e Flexible to adapt for other functionality (hash, MAC, cipher) or to designs that are
nonce-reuse resistant and secure under release-unverified-plaintext.

e Elegant and simple design, obvious state size, no key schedule.

e Plaintext and ciphertext blocks can both be computed online, without waiting for the
complete message or even the message length.

e Little implementation overhead for decryption, which uses the same round permuta-
tion as encryption.

e Weak round transformations can be used to process additional plaintext blocks, im-
proving the performance for long messages.

Compared to other sponge-based designs, ASCON uses a stronger keyed initialization and
keyed finalization phase. The result is that even a complete state recovery is not sufficient
to recover the secret key or to allow universal forgery.

14



The addition of 03! ||1 after the last processed associated data block and the first
plaintext block acts as a domain separation to prevent attacks that change the role of
plaintext and associated data blocks.

If no associated data and only an incomplete plaintext block are present, there is no
additional intermediate round transformation p®, only the initialization and finalization
calls p®. To prevent that key additions between the two applications of p® cancel each
other out, they are added to disjoint halves of the capacity part S, of the state.

5.2 Choice of the Round Constants

The round constants have been chosen large enough to avoid slide, rotational, self-similarity
or other attacks. Their values were chosen in a simple, obvious way (increasing and decreas-
ing counter for the two halves of the affected byte), which makes them easy to compute
using a simple counter and inversion operation. In addition, their low entropy shows that
the constants are not used to implement any backdoors.

The pattern can also easily be extended for up to 16 rounds if a very high security
margin is desired. Adding more than 16 rounds is not expected to further improve the
security margin.

The position for inserting the round constants (in word x2) was chosen so as to allow
pipelining with the next or previous few operations (message injection in the first round or
the following instructions of the bit-sliced S-box implementation).

Similar to the round constants, the initialization vector is forced to be asymmetric in
each word by including the parameters k, a,b in fixed positions and fixed 0 bits in others.
This inclusion of the parameters, in particular k, also serves to distinguish the different
members of the ASCON family.

5.3 Choice of the Substitution Layer

The substitution layer is the only non-linear part of the round transformation. It mixes 5
bits, each at the same bit position in one of the 5 state words. The S-box was designed
according to the following criteria:

e invertible and no fix-points

e efficient bit-sliced implementation with few, well pipelinable instructions

e cach output bit depends on at least 4 input bits

e algebraic degree 2 to ease threshold implementations and masking

e maximum differential and linear probability 1/4

e differential and linear branch number 3

e avoid trivially iterable differential properties in the message injection positions

The x mapping of Keccak fulfills several of the aforementioned properties and is al-
ready well analyzed. In addition, the xy mapping is highly parallelizable and has a compact
description with relatively few instructions. This makes y fast in both, software and hard-
ware. The drawback of x are its differential and linear branch numbers (both 2), a fix-point
at value zero and that each output bit only depends on 3 input bits, only two of them
non-linearly.

For a better interaction with the linear layer of ASCON and a better trade-off between
performance and security, we require a branch number of 3. This and the other additional
requirements can be achieved without destroying other properties by adding lightweight
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affine transformations to the input and output of . The costs of these affine transformations
are quickly amortized since a branch number of 3 (together with an according linear layer)
essentially doubles the number of active S-boxes from round to round (in sparse trails).
There are only a handful of options for a lightweight transformation (few xor operations)
that achieve both required branch numbers. We experimentally selected the candidate that
provided the best diffusion in combination with the selected linear layer.

The bit-sliced design of the S-box has several benefits: it is highly efficient to imple-
ment parallel invocations on 64-bit processors (and other architectures), and no look-up
tables are necessary. This effectively precludes typical cache-timing attacks for software
implementations.

The algebraic degree of 2 theoretically makes the S-box more prone to analysis with
algebraic attacks; however, we did not find any practical attacks. We consider it more im-
portant to allow efficient implementation of side-channel countermeasures, such as threshold
implementation [11] and masking, which is facilitated by the low degree.

The differential and linear probabilities of the S-box are not ideal, but using one of the
available 5-bit AB/APN functions like in Fides [5] was not an option due to their much
more costly bit-sliced implementation. Considering the relatively lightweight linear layer,
repeating more rounds of the cheaper, reasonably good S-box is more effective than fewer
rounds of a perfect, but very expensive S-box.

5.4 Choice of the Linear Diffusion Layer

The linear diffusion layer mixes the bits within each 64-bit state word. For resistance
against linear and differential cryptanalysis, we required a branch number of at least 3.
Additionally, the interaction between the linear layers for separate words should provide
very good diffusion, so different linear functions are necessary for the 5 different words.
These requirements should be achieved at minimal cost. Although simple rotations are
almost for free in hardware and relatively cheap in software, the slow diffusion requires a
very large number of rounds. Moreover, the best performance can be achieved by balancing
the costs of the substitution and linear layer.

On the other hand, mixing layers as used in AES-based designs provide a high branch
number, but are too expensive to provide an acceptable speed at a small size. The mixing
layer of Keccak is best used with a large number of large words. Other possible candidates
are the linear layers of Luffa |7], Hamsi [9], other SPN-based designs. However, these
candidates were either too slow or provide a less optimal diffusion.

The rotation values of the linear diffusion layer in ASCON are chosen similar to those of
¥ in SHA-2 [10]. These functions offer a branch number of 4. Additionally, if we choose
one rotation constant of each ¥ function to be zero, the performance can be improved while
the branch number stays the same. On the other hand, the cryptographic strength can
be improved by using different rotation constants for each 64-bit word without sacrifice of
performance. In this case, the branch number of the substitution and linear layer amplify
each other which increases the minimum number of active S-boxes.

5.5 Statement

The designers have not hidden any weaknesses in this cipher.
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Chapter 6

Intellectual Property

The submitters are not aware of any patent involved in ASCON, and it will not be patented.
If any of this information changes, the submitters will promptly (and within at most one
month) announce these changes on the crypto-competitions mailing list.

Chapter 7

Consent

The submitters hereby consent to all decisions of the CAESAR selection committee re-
garding the selection or non-selection of this submission as a second-round candidate, a
third-round candidate, a finalist, a member of the final portfolio, or any other designa-
tion provided by the committee. The submitters understand that the committee will not
comment on the algorithms, except that for each selected algorithm the committee will sim-
ply cite the previously published analyses that led to the selection of the algorithm. The
submitters understand that the selection of some algorithms is not a negative comment
regarding other algorithms, and that an excellent algorithm might fail to be selected simply
because not enough analysis was available at the time of the committee decision. The sub-
mitters acknowledge that the committee decisions reflect the collective expert judgments
of the committee members and are not subject to appeal. The submitters understand that
if they disagree with published analyses then they are expected to promptly and publicly
respond to those analyses, not to wait for subsequent committee decisions. The submitters
understand that this statement is required as a condition of consideration of this submission
by the CAESAR selection committee.
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Appendix A

Tables

Table 10: The differential profile of the ASCON S-box.

nh00400420402202000000042020200020
m04008000420200000020002024000020
m00400420000002040000042020020420
M04040000022000040020002420220020
ﬂl.d04000400002200008020002400020020
w00400020022082040000002000004020
w04040400000000048020002000200020
H00400020422200400800002020000000
w00008400400202000020002020200400
m00400020020000000800002024220004
H00040400002002400020002420020004
B00400420000200000800042000020004
m00000000022202400020002400224004
H00400420002000400800042000200000
O FooooaNTFFNNNODODOODOONOFoOOoOoNONOoODOO™NO
VOOODODWOODOFFOONONDODODOODDODOFOOONODODODOO FAO
Vot oFfoonNoonNoocoocofooanNnofoooaFfoNooaNo
VOO OoOOCOOoOOCOOoOOoONOCONOFOOOWFoOoOFANOANNODONO
Lo fFfoocooafFfoooNoocoowoNocofooooaaNooao
BROCOODOCO0CODDFONANODNDODODODODODDNVOODFOOONFONO
Moo oo ococafFFoaNoONFOoOoOoONODFFOOoONDODODODDDDO O
COOCOODXVOCOFFNONODODOOCOODOCOFOoOOOANFNOODOOO
VOO FOONODOOCOOONODODOONODOFFOONOANNO FHOF
FOoOoOoOoOOoCOoOOoOCoOCOCOoONANOCOOFoOoOOoOCoOoOoCHWFoOoOFANODONOD OO
Moo CcCooco AN FoONONONODODOOoONOCDOOoDOoCoOo oA F H o
NOCOOCOCOCOCOFOONNODOFOOCOODCWOOOFOoOOoOANNOD OO H
N OO FOONOCONNODONFOOONODOODODODOONOD FoOoOoOO
0w0000000000000000000000000000000
cramsnorwossoTowIAARIRYNRI IR LT 2

19



Table 11: The linear profile of the ASCON S-box.
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