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ASCON Overview



ASCONMode for Authenticated Encryption
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L Designed in 2014 [DEMS16], Journal of Cryptology in 2021 [DEMS21c]

3 First choide for lightweight AEAD in CAESAR portfolio

ü Extensive published cryptanalysis confirming its security margin

3 Additional modes for Hash, XOF, MAC, PRF [DEMS21a; DEMS21b]
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ASCON Permutation with {6, 8, 12} Rounds

S-box layer
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x0 := x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 := x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 := x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 := x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 := x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)
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ASCON-128 vs ASCON-128a

ASCON-128a: 33% more performance, more rounds, larger rate

Same security, different trade-off (rate vs. number of rounds)

Both scrutinized for 8 years in cryptographic competitions

Most security analysis can be applied to both algorithms

Similar security margin, no clear preference
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ASCON Implementations

https://github.com/ascon/ascon-c (ASCON team)
AEAD, Hash, XOF, MAC, PRF

C: ref, speed/area optimized, combined

ASM: esp32, armv6, armv6m, armv7m, rv32

Masked C+ASM: 2-4 shares, leveled
https://github.com/rweather/ascon-suite (Rhys Weatherley)

AEAD, Hash, HKDF, ISAP, KMAC, PBKDF2, PRNG, SIV, XOF

8/32/64-bit C, AVR, ARM, RISC-V, m68k, Xtensa (ESP32)

Framework to generate C/ASM/masked implementations
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Performance and Code Size



New ASCON Implementations
(Improvements in the Final Round)

Fewer instructions for S-box [CJL+20]: -10%

Improved 8-bit AVR [ascon-suite] (time/size): -11%/-44%

Combined ASCON AEAD+Hash [ascon-c] (size): -17%

Improved low-size [ascon-c] (size 128/128a/Hash): -7%/-30%/-20%

Bit-interleaved interface [ascon-c] (time 128/128a/Hash): -17%/-23%/-5%

ESP32 implementations [ascon-c][Bac22] (time/size): -66%/-64%

RV32 implementations [ascon-c][Bac22] (RV32,RV32I,RV32B): New

Masked ARMv6/RV32 [ascon-c] (leveled, 2-4 shares): New

ASCON-HASHA, ASCON-XOFA [DEMS21b] (time): -33%

ASCON-MAC, ASCON-PRF compared to ASCON-KMAC [DEMS21a] (time): -66%
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Microcontroller Benchmarking

ascon−nocrypt
best−nocrypt for primary submission @las3

Performance (time)

Uno: 1.34x

F1: 1.06x

ESP: 1.92x

F7: 1.02x

R5: 0.61x

Code size (ROM)

Uno: 3.22x

F1: 1.62x

ESP: 1.31x

F7: 1.10x

R5: 1.07x

https://lwc.las3.de/ [2020/10/14]
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Microcontroller Benchmarking

ASCON-128: best primary finalist in most categories

Performance (time)

Uno: 1.24x

F1: 1.28x

ESP: 0.58x

F7: 0.89x

R5: 0.55x

Code size (ROM)

Uno: 1.59x

F1: 0.80x

ESP: 0.55x

F7: 0.87x

R5: 0.90x

https://lwc.las3.de/ [2022/05/05]
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Microcontroller Benchmarking

ASCON-128: best primary finalist in most categories

Performance (time)

Uno: 1.24x

F1: 1.28x

ESP: 0.58x

F7: 0.89x

R5: 0.55x

Code size (ROM)

Uno: 1.59x

F1: 0.80x

ESP: 0.55x

F7: 0.87x

R5: 0.90x

https://lwc.las3.de/ [2022/05/05]
0-25%
slower

︸ ︷︷ ︸

︷ ︸︸ ︷
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High-end Benchmarking
(Imagine ASCON hardware instructions)

AMD Ryzen 9:

ASCON-128a: 5.1 c/b

ASCON-128: 7.8 c/b

ASCON-HASHA: 10.6 c/b∗

ASCON-HASH: 15.9 c/b

ARM Cortex-A72:

ASCON-128a: 6.9 c/b

ASCON-128: 10.4 c/b

ASCON-HASHA: 13.5 c/b∗

ASCON-HASH: 20.2 c/b

https://bench.cr.yp.to/ [2022/05/03]
∗ estimated, not yet benchmarked
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Implementation Techniques



Flexibility of ASCON Components

Parallelism: S-box and linear layer support up to 5 ALUs

Small state: 10 32-bit registers, 2 temporary, 1 for loop

S-box: new description with fewer instructions

Linear: 64-bit rotate or bit interleaving or funnel shift

Modes: combine absorb, squeeze, insert (xor, read, write)

Rate: loop for combined implementations (rate 64, 128)

Short messages: only init and final needed
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ASCON Hardware Extensions

Fast, lightweight ASCON round instruction for 32-bit ARM/RV32 [SP20]

RI5CY ASCON-pwith 4.7kGE: speedup factor 50x
Reuse 10 registers of CPU register file

ARM Custom Datapath Extendion, RISC-V Bitmanip Extension, ...

32-bit funnel shift instructions (RV32B: FSRI, ESP32: SRC)
32-bit interleaving instructions (RV32B: ZIP/UNZIP, ARM CDE: CX3)
Fused AND/XOR, BIC/XOR instructions (ARM A64: BCAX, ARM CDE: CX3A)
SHA-2 like Sigma instructions (ARM CDE: CX3DA)
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Bit-interleaved Interface
(ascon128bi32, ascon128abi32, asconhashbi32, asconhashabi32)

Convention: data is stored/transmitted in bit interleaved format

Communication parties need to agree, similar to endianess

Improved performance on 32-bit ARM platforms:

ASCON-128/ASCON-128a: -17%/-23%

Also demonstrates improvement of ASCONwith

Bit-interleaving instructions (obvious)
Funnel shift instructions (same effect!)
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Side-channel Protection



Designed with SCA in Mind

Algebraic degree 2 of S-box

Limited damage if state is recovered

Leveled implementations [BBC+20]

Higher protection order for Init/Final (key)
Lower protection order for AD/PT/CT processing (data)

Masking using Toffoli gate [DDE+20]
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Masking using Toffoli Gate

More efficient than masked AND gate

Fewer instructions, registers, randomness

No fresh randomness needed during round computation

Randomness is not lost (invertible shared Toffoli gate)
Randomness of previous round can be reused

Benefits of invertible shared function:

Uniform by design
SIFA: Reduced attack surface if used with redundancy [DDE+20]
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1st-order Masked Keccak S-box

State:[a0,a1,b0,b1,c0,c1,d0,d1,e0,e1,r0]

(r1,r0) ← clone(r0)
toffoli_shared(r0,r1,e0,e1,a0,a1)
toffoli_shared(a0,a1,b0,b1,c0,c1)
toffoli_shared(c0,c1,d0,d1,e0,e1)
toffoli_shared(e0,e1,a0,a1,b0,b1)
toffoli_shared(b0,b1,c0,c1,d0,d1)
d0 ← xor(d0,r0)
d1 ← xor(d1,r1)

Similar constructions for higher degree S-boxes may be less
efficient [DDE+20]
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Further SCA Optimizations

Preliminary Goal: Achieve 1st-order protection with 2/3 shares in C1

Rotation offset between shares
Minimum number of ASM instructions (Toffoli gate)
Some register clears/NOPS needed
Extension to 3-shares with trick from [SM21]

Performance in cycles/byte (green: evaluated)

impl/shares armv6 C C 2-1-2 2-1-2 2 2 3 3
flags -O2 -Os -O2 -Os -O2 -Os -O2 -Os

ARM1176JZF 58 70 85 88 100 260 343 524 703
STM32F415 59 84 90 90 98 320 378 650 669

1Our implementations should be considered as a starting point to generate device specific C/ASM implementations 15 / 21



Evaluation and Verification



Testvector Leakage Assessment

Goal: 1st-order protection with 2/3 shares

Evaluation setup:

ChipWhisperer-Lite
UFO Board
STM32F303, STM32F415
We set pa, pb = 2 due to limited sample buffer

We present decryption results of protected_bi32_armv6

More implementations/results available at:
https://github.com/ascon/simpleserial-ascon
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TVLA Results

STM32F303

3 (rotated) shares

No device-specific fixes

8m traces
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TVLA Results

STM32F415

2 (rotated) shares

Device-specific fixes

4m traces
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TVLA Results

STM32F415

2 (rotated) shares

Device-specific fixes

5m traces
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Formal Masking Verification

Formal verification of masking in SW/HW using COCO [GHP+21]

Based on ideas of REBECCA [BGI+18]

Verifies masked software in “hardware probing model” on CPU netlists

Considers stable signals, transitions, glitches
RISC-V IBEX core (comparable to ARM Cortex-M0)

Also suitable for masked hardware circuits with/without state machines
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COCO Verification Flow
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COCO Verification Results

Hardened RISC-V IBEX core from [GHP+21] as reference

We mapped one round of 2-share ASCON-p round from to RISC-V ASM

We verified 1st-order probing security (incl. transitions/glitches)

No online randomness
Performance of 260 c/b
Multi-round correctness due to uniformity of masking
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Questions
?
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