
New ASCON Implementations

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, Robert Primas, Martin Schläffer

NIST LWC Workshop 2022

ascon.iaik.tugraz.at

ascon.iaik.tugraz.at


 Outline

ASCON Overview

Performance and Code Size

Implementation Techniques

Side-channel Protection

Evaluation and Verification

1 / 21



ASCON Overview



ASCONMode for Authenticated Encryption

IV∥K∥N

pa

Initialization
0∥K

A1
r

pb
c

As
r

pb
c

Associated Data
1

P1C1
r

c
pb

Pt−1 Ct−1

r

c
pb

Plaintext

Pt Ct
r

c

K∥0

pa

Finalization
K

T

128

L Designed in 2014 [DEMS16], Journal of Cryptology in 2021 [DEMS21c]

3 First choide for lightweight AEAD in CAESAR portfolio

ü Extensive published cryptanalysis confirming its security margin

3 Additional modes for Hash, XOF, MAC, PRF [DEMS21a; DEMS21b]

2 / 21



ASCON Permutation with {6, 8, 12} Rounds

S-box layer

x4
x3
x2
x1
x0

x0

x1

x2

x3

x4

x0

x1

x2

x3

x4

Linear layer

x4
x3
x2
x1
x0x1

x0 := x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 := x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 := x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 := x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 := x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

3 / 21



ASCON-128 vs ASCON-128a

ASCON-128a: 33% more performance, more rounds, larger rate

Same security, different trade-off (rate vs. number of rounds)

Both scrutinized for 8 years in cryptographic competitions

Most security analysis can be applied to both algorithms

Similar security margin, no clear preference

4 / 21



ASCON Implementations

https://github.com/ascon/ascon-c (ASCON team)
AEAD, Hash, XOF, MAC, PRF

C: ref, speed/area optimized, combined

ASM: esp32, armv6, armv6m, armv7m, rv32

Masked C+ASM: 2-4 shares, leveled
https://github.com/rweather/ascon-suite (Rhys Weatherley)

AEAD, Hash, HKDF, ISAP, KMAC, PBKDF2, PRNG, SIV, XOF

8/32/64-bit C, AVR, ARM, RISC-V, m68k, Xtensa (ESP32)

Framework to generate C/ASM/masked implementations
5 / 21

https://github.com/ascon/ascon-c
https://github.com/rweather/ascon-suite


Performance and Code Size



New ASCON Implementations
(Improvements in the Final Round)

Fewer instructions for S-box [CJL+20]: -10%

Improved 8-bit AVR [ascon-suite] (time/size): -11%/-44%

Combined ASCON AEAD+Hash [ascon-c] (size): -17%

Improved low-size [ascon-c] (size 128/128a/Hash): -7%/-30%/-20%

Bit-interleaved interface [ascon-c] (time 128/128a/Hash): -17%/-23%/-5%

ESP32 implementations [ascon-c][Bac22] (time/size): -66%/-64%

RV32 implementations [ascon-c][Bac22] (RV32,RV32I,RV32B): New

Masked ARMv6/RV32 [ascon-c] (leveled, 2-4 shares): New

ASCON-HASHA, ASCON-XOFA [DEMS21b] (time): -33%

ASCON-MAC, ASCON-PRF compared to ASCON-KMAC [DEMS21a] (time): -66%
6 / 21

https://github.com/rweather/ascon-suite
https://github.com/ascon/ascon-c
https://github.com/ascon/ascon-c
https://github.com/ascon/ascon-c
https://github.com/ascon/ascon-c
https://github.com/ascon/ascon-c
https://github.com/ascon/ascon-c


Microcontroller Benchmarking

ascon−nocrypt
best−nocrypt for primary submission @las3

Performance (time)

Uno: 1.34x

F1: 1.06x

ESP: 1.92x

F7: 1.02x

R5: 0.61x

Code size (ROM)

Uno: 3.22x

F1: 1.62x

ESP: 1.31x

F7: 1.10x

R5: 1.07x

https://lwc.las3.de/ [2020/10/14]
7 / 21

https://lwc.las3.de/


Microcontroller Benchmarking

ASCON-128: best primary finalist in most categories

Performance (time)

Uno: 1.24x

F1: 1.28x

ESP: 0.58x

F7: 0.89x

R5: 0.55x

Code size (ROM)

Uno: 1.59x

F1: 0.80x

ESP: 0.55x

F7: 0.87x

R5: 0.90x

https://lwc.las3.de/ [2022/05/05]
7 / 21

https://lwc.las3.de/


Microcontroller Benchmarking

ASCON-128: best primary finalist in most categories

Performance (time)

Uno: 1.24x

F1: 1.28x

ESP: 0.58x

F7: 0.89x

R5: 0.55x

Code size (ROM)

Uno: 1.59x

F1: 0.80x

ESP: 0.55x

F7: 0.87x

R5: 0.90x

https://lwc.las3.de/ [2022/05/05]
0-25%
slower

︸ ︷︷ ︸

︷ ︸︸ ︷

7 / 21

https://lwc.las3.de/


High-end Benchmarking
(Imagine ASCON hardware instructions)

AMD Ryzen 9:

ASCON-128a: 5.1 c/b

ASCON-128: 7.8 c/b

ASCON-HASHA: 10.6 c/b∗

ASCON-HASH: 15.9 c/b

ARM Cortex-A72:

ASCON-128a: 6.9 c/b

ASCON-128: 10.4 c/b

ASCON-HASHA: 13.5 c/b∗

ASCON-HASH: 20.2 c/b

https://bench.cr.yp.to/ [2022/05/03]
∗ estimated, not yet benchmarked

8 / 21

https://bench.cr.yp.to/


Implementation Techniques



Flexibility of ASCON Components

Parallelism: S-box and linear layer support up to 5 ALUs

Small state: 10 32-bit registers, 2 temporary, 1 for loop

S-box: new description with fewer instructions

Linear: 64-bit rotate or bit interleaving or funnel shift

Modes: combine absorb, squeeze, insert (xor, read, write)

Rate: loop for combined implementations (rate 64, 128)

Short messages: only init and final needed

9 / 21



ASCON Hardware Extensions

Fast, lightweight ASCON round instruction for 32-bit ARM/RV32 [SP20]

RI5CY ASCON-pwith 4.7kGE: speedup factor 50x
Reuse 10 registers of CPU register file

ARM Custom Datapath Extendion, RISC-V Bitmanip Extension, ...

32-bit funnel shift instructions (RV32B: FSRI, ESP32: SRC)
32-bit interleaving instructions (RV32B: ZIP/UNZIP, ARM CDE: CX3)
Fused AND/XOR, BIC/XOR instructions (ARM A64: BCAX, ARM CDE: CX3A)
SHA-2 like Sigma instructions (ARM CDE: CX3DA)

10 / 21



Bit-interleaved Interface
(ascon128bi32, ascon128abi32, asconhashbi32, asconhashabi32)

Convention: data is stored/transmitted in bit interleaved format

Communication parties need to agree, similar to endianess

Improved performance on 32-bit ARM platforms:

ASCON-128/ASCON-128a: -17%/-23%

Also demonstrates improvement of ASCONwith

Bit-interleaving instructions (obvious)
Funnel shift instructions (same effect!)

11 / 21



Side-channel Protection



Designed with SCA in Mind

Algebraic degree 2 of S-box

Limited damage if state is recovered

Leveled implementations [BBC+20]

Higher protection order for Init/Final (key)
Lower protection order for AD/PT/CT processing (data)

Masking using Toffoli gate [DDE+20]

12 / 21



Masking using Toffoli Gate

More efficient than masked AND gate

Fewer instructions, registers, randomness

No fresh randomness needed during round computation

Randomness is not lost (invertible shared Toffoli gate)
Randomness of previous round can be reused

Benefits of invertible shared function:

Uniform by design
SIFA: Reduced attack surface if used with redundancy [DDE+20]

13 / 21



1st-order Masked Keccak S-box

State:[a0,a1,b0,b1,c0,c1,d0,d1,e0,e1,r0]

(r1,r0) ← clone(r0)
toffoli_shared(r0,r1,e0,e1,a0,a1)
toffoli_shared(a0,a1,b0,b1,c0,c1)
toffoli_shared(c0,c1,d0,d1,e0,e1)
toffoli_shared(e0,e1,a0,a1,b0,b1)
toffoli_shared(b0,b1,c0,c1,d0,d1)
d0 ← xor(d0,r0)
d1 ← xor(d1,r1)

Similar constructions for higher degree S-boxes may be less
efficient [DDE+20]

14 / 21



Further SCA Optimizations

Preliminary Goal: Achieve 1st-order protection with 2/3 shares in C1

Rotation offset between shares
Minimum number of ASM instructions (Toffoli gate)
Some register clears/NOPS needed
Extension to 3-shares with trick from [SM21]

Performance in cycles/byte (green: evaluated)

impl/shares armv6 C C 2-1-2 2-1-2 2 2 3 3
flags -O2 -Os -O2 -Os -O2 -Os -O2 -Os

ARM1176JZF 58 70 85 88 100 260 343 524 703
STM32F415 59 84 90 90 98 320 378 650 669

1Our implementations should be considered as a starting point to generate device specific C/ASM implementations 15 / 21



Evaluation and Verification



Testvector Leakage Assessment

Goal: 1st-order protection with 2/3 shares

Evaluation setup:

ChipWhisperer-Lite
UFO Board
STM32F303, STM32F415
We set pa, pb = 2 due to limited sample buffer

We present decryption results of protected_bi32_armv6

More implementations/results available at:
https://github.com/ascon/simpleserial-ascon

16 / 21

https://rtfm.newae.com/Capture/ChipWhisperer-Lite/
https://rtfm.newae.com/Targets/CW308%20UFO/
https://github.com/ascon/simpleserial-ascon/tree/main/Implementations/crypto_aead/ascon128v12/protected_bi32_armv6
https://github.com/ascon/simpleserial-ascon


TVLA Results

STM32F303

3 (rotated) shares

No device-specific fixes

8m traces

17 / 21



TVLA Results

STM32F415

2 (rotated) shares

Device-specific fixes

4m traces

18 / 21



TVLA Results

STM32F415

2 (rotated) shares

Device-specific fixes

5m traces

18 / 21



Formal Masking Verification

Formal verification of masking in SW/HW using COCO [GHP+21]

Based on ideas of REBECCA [BGI+18]

Verifies masked software in “hardware probing model” on CPU netlists

Considers stable signals, transitions, glitches
RISC-V IBEX core (comparable to ARM Cortex-M0)

Also suitable for masked hardware circuits with/without state machines

19 / 21



COCO Verification Flow

Masked Cipher Create
Testbench

Verilator
Testbench

Parse

.sv
.sv

Secured IBEX

Circuit Graph

Netlist

Trace
Execution

Trace

Verify

Yes, secure.

No, not
secure. Leak
in cycle ... at

gate ...

1

2

3

.S .py

.ys

.vcd .py

.json

.v

Verilator

RISC-V
ASM

Verification
Configuration

Yosys

4

Cadical
.c

20 / 21



COCO Verification Results

Hardened RISC-V IBEX core from [GHP+21] as reference

We mapped one round of 2-share ASCON-p round from to RISC-V ASM

We verified 1st-order probing security (incl. transitions/glitches)

No online randomness
Performance of 260 c/b
Multi-round correctness due to uniformity of masking

21 / 21



Questions
?



Bibliography I

[Bac22] Ferdinand Bachmann. Optimized C and Assembly Implementations for ESP32
and RISC-V. Bachelor’s Thesis (work in progress). 2022. URL:
https://github.com/Ferdi265/ascon-c.

[BBC+20] Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun Guo,
Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Mode-Level vs. Implementation-Level Physical Security in Symmetric
Cryptography - A Practical Guide Through the Leakage-Resistance Jungle.
Advances in Cryptology - CRYPTO 2020. Vol. 12170. Lecture Notes in Computer
Science. Springer, 2020, pp. 369–400. DOI: 10.1007/978-3-030-56784-2\_13.
URL: https://doi.org/10.1007/978-3-030-56784-2%5C_13.

[BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer,
Stefan Mangard, and Johannes Winter. Formal Verification of Masked Hardware
Implementations in the Presence of Glitches. EUROCRYPT (2). Vol. 10821.
Lecture Notes in Computer Science. Springer, 2018, pp. 321–353.

https://github.com/Ferdi265/ascon-c
https://doi.org/10.1007/978-3-030-56784-2\_13
https://doi.org/10.1007/978-3-030-56784-2%5C_13


Bibliography II

[CJL+20] Fabio Campos, Lars Jellema, Mauk Lemmen, Lars Müller, Daan Sprenkels, and
Benoît Viguier. Assembly or Optimized C for Lightweight Cryptography on
RISC-V? CANS 2020. Vol. 12579. LNCS. Springer, 2020, pp. 526–545. DOI:
10.1007/978-3-030-65411-5_26.

[DDE+20] Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes Groß,
Florian Mendel, and Robert Primas. Protecting against Statistical Ineffective
Fault Attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020.3 (2020),
pp. 508–543.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2 (Submission to the CAESAR Competition). Final Portfolio of CAESAR:
http://competitions.cr.yp.to/caesar-submissions.html. 2016.

[DEMS21a] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon PRF, MAC, and Short-Input MAC. IACR Cryptology ePrint Archive, Report
2021/1574. 2021. URL: https://ia.cr/2021/1574.

https://doi.org/10.1007/978-3-030-65411-5_26
http://competitions.cr.yp.to/caesar-submissions.html
https://ia.cr/2021/1574


Bibliography III

[DEMS21b] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2 (Submission to NIST). NIST Finalists: https:
//csrc.nist.gov/Projects/Lightweight-Cryptography/Finalists.
2021.

[DEMS21c] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight Authenticated Encryption and Hashing. Journal of
Cryptology 34.3 (2021), p. 33. DOI: 10.1007/s00145-021-09398-9.

[GHP+21] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and
Roderick Bloem. Coco: Co-Design and Co-Verification of Masked Software
Implementations on CPUs. USENIX Security Symposium. USENIX Association,
2021, pp. 1469–1468.

[SM21] Aein Rezaei Shahmirzadi and Amir Moradi. Second-Order SCA Security with
almost no Fresh Randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021.3
(2021), pp. 708–755.

https://csrc.nist.gov/Projects/Lightweight-Cryptography/Finalists
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Finalists
https://doi.org/10.1007/s00145-021-09398-9


Bibliography IV

[SP20] Stefan Steinegger and Robert Primas. A Fast and Compact RISC-V Accelerator for
Ascon and Friends. CARDIS. Vol. 12609. Lecture Notes in Computer Science.
Springer, 2020, pp. 53–67.


	Ascon Overview
	
	Performance and Code Size
	
	Implementation Techniques
	
	Side-channel Protection
	
	Evaluation and Verification
	
	Questions
	
	References

